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Abstract: -Handwriting recognition is having high demand in 
commercial & academics. In recent years lots of good work 
has been done on hand written digit recognition to improve 
accuracy. Handwritten digit recognition system needs larger 
dataset and long training time to improve accuracy & reduce 
error rate. Training of Neural Networks for large data sets is 
very time consuming task on CPU. Hence, in this paper we 
presented fast efficient artificial neural network for 
handwritten digit recognition on GPU to reduce training time. 
Standard back propagation (BP) learning algorithm with 
multilayer perceptron (MLP) classification is chosen for this 
task & implemented on GPU for parallel training. This paper 
focused on specific parallelization environment Compute 
Unified Device Architecture (CUDA) on a GPU hence 
effectively speedup training & reduce training time.      
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1. INTRODUCTION 
To recognize handwritten digits like humans or near to that 
is very challenging task. Because of long training time of 
learning algorithms it is difficult to bring it to commercial 
application. To bridge this gap combination of software and 
hardware is required that works on parallelization [1],[2]. 
For high accuracy large amount of data is required to train 
neural nets. But there is a greater need to explore the 
capabilities of advance hardware and software technology 
by exploring the parallelization capabilities of graphic 
processing units (GPUs). The CUDA is a parallel 
computing platform and programming environment 
invented by NVIDIA [4]. In this paper we explore the 
features of CUDA on GPU for the parallelized simulation 
of a neural network based handwritten digit recognition. 
The paper is organised as follows. Section 2 presents the 
related literature work, state of the art and the recent 
research trends. Section 3 describes the Parallel Training 
Approach and implementation details. Section 4 describes 
experimental setup, Neural Network Architecture & 
dataset. Section 5 describes the performance & 
observations. Finally, section 6 gives the conclusion and 
future work.  
 

2. LITERATURE REVIEW 
Lots of research papers are written on handwritten digit 
recognition. An efficient Hindi Digit Recognition System 
drawn by the mouse and developed using Multilayer 

Perceptron Neural Network (MLP) with Backpropagation 
[5]. The proposed system has been trained on samples of 
800 images and tested on samples of 300 images written by 
different users selected from different ages. An 
experimental result shows high accuracy of about 91% on 
the testing samples. In [6] author presented an hybrid 
approach with MLP for Gujarati hand written numerals 
And achieved accuracy of about 92% on the testing 
samples. A novel approach using SVM with MLP for 
English hand written numerals is having highest accuracy 
of about 97% on the testing samples [7]. A novel approach 
using ANN with Hu moments for English hand written 
numerals with poor accuracy on the testing samples [8]. 
ANN with nprTool for English hand written numerals And 
achieved highest accuracy of about 98% on the testing 
samples [9]. Processing steps for handwritten digit 
recognition system is as follows.  
 

 
Fig.1. Processing steps for handwritten digit recognition 

system. 
 
 

Advance technology we have of powerful graphic 
processing units (GPU) in our desktop, laptops and servers 
at low cost. Applying parallelization techniques for neural 
network simulation became a promising research field by 
using modern hardware. 
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Table 1: Focus on training time from previous work 

Title Approach Accuracy 
Data 
Size 

Focus 
Training 

Time

“An Efficient Neural Network For Recognizing 
Gestural Hindi Digits” AJAS 2013 [5] 

Back Propagation with 
MLP 

91% small No 

“Recognition Of Gujarati Numerals Using Hybrid 
Approach And Neural Networks ”  IJCA(2013)[6] 

Hybrid with MLP 92% small No 

“ A Novel Approach to Recognize the off-line 
Handwritten Numerals using MLP and SVM 
Classifiers” IJCSET (2013)[7] 

SVM with MLP 97% 
Very 
small 

No 

“An Artificial Neural Network Model For 
Handwritten Digits Recognition” RRTIEP 
(2013)[8] 

ANN with Hu moments Poor small No 

“Handwritten Isolated Digit Recognition Using 
Artificial Neural Networks” IJCSAIT(2013)[9] 

ANN with nprtool 98% 
Very 
small 

No 

 
3.  PROPOSED SYSTEM 

3.1 Overview of Proposed Work   
We proposed new fresh approach to existing work for 
improvements of learning algorithm and novel feature 
extraction method for Handwritten Digit Recognition. We 
focus to implementing method and architecture uses GPUs 
for parallel processing to speed up learning process 
Our study forces us to improve following parameters to be 
considered to improve the system. 
1) Decrease training time without affecting accuracy  
2) Implementing method and architecture uses GPU for 

parallel processing to speed up learning process. 
 
3.2 Flow of Proposed Work  
1) Input the digit: The user draws a digit inside the 

special window using the mouse and then it is saved on 
a file as .bmp/.jpg image 

2) Pre-processing: The goal of pre-processing is to 
simplify the digit recognition problem without 
throwing away any important information to be more 
concise representation for feature extraction stage. This 
operation involves converting the gray image into a 
binary image, perform skeletonization, invert the 
image, and resize the binary image 

3) Feature extraction: In this work novel Features 
Extraction Method is proposed. Features are a set of 
values of a given digit that are used to distinguish the 
digit from each other. The feature extraction phase 
calculates these values in order to produce a set of 
measurements, called the feature vector, for each 
object 

4) Learning Phase: In this work new parallel learning 
method is approached. 

5) Digit recognition: The recognition step is based on the 
use of neural networks, or in more, it’s based on 
MLPs. This step realizes a set of discriminated 
functions that associate a score to each possible class. 
These scores may be regarded as being representative 
of the probability of each class, to be one of the digits 
presented to the system  

6) Display digit: Displaying the output of a digit. 

3.3 Back-Propagation Algorithm [5][12][14] 
Back-propagation algorithm consists of the following steps: 

1) Initialize input layer including an input for bias. Ii, 

Wi, Ti, Yi 
Where, Ii = input neurons, Wi = random weights, 
Ti= target values, Yi=output at each neuron 

2) Propagate activity forward through input layer to 
output layer 

I => H => O 
3) Calculate output at each neurons at each layer 

Oi =∑ Ii * Wi 
4) Apply activation function to neurons and collect 

final output at each neurons 
Yi = 1/1+e 

-(Oi) 
5) Calculate the error in the output layer 

Error =1/2 (Yi-Ti) 
2 

6) Back propagate the error through layer 
dE/dWt  = d(Error)/dWt 

7) Update the weights 
∆Wt = - ε (dE/dWt ) + α( ∆Wt-1)  
Where,  
ε = learning rate & 
α = momentum 

 
Algorithm 1: Back propagation on CPU 

 
Forward Propagation 
1. Oi = IiW1 
2. Oi = 1/1+e-∑ Ii * Wi 
3. Yi = OiW2 
4. Yi = 1/1+e-Yi 
Backward Propagation 
5. Error = 1/2 (Yi-Ti) 

2 
6. ∆E= d(Error) / dWt 
7. ∆Wt = - ε (dE / dWt ) + α( ∆Wt-1)  
8. Wj  <=  Wj + ∆Wt 

 
3.4 Proposed Parallel Learning Method 
We apply parallelization approach motivated by our 
problem domain and the available hardware resources: 
1. The network node parallelization is deployed on GPU 

using CUDA.  
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2. In this only one copy of the   network is instantiated, 
which resides on GPU. 

3. Each thread on the GPU behaves like a neuron and 
executes independently.  

4. To speed up the implementation the training weights 
and input data are stored in one dimensional array 
aligned with the host and the device memory for 
looping in GPU. 

5. BPMLP is trained by a supervised learning mode. 
After a feed-forward operation, the output value is 
compared with the target value and classified to 10 
categories, to check whether the BPMLP has correctly 
classified the hand written digits.  

6. GPU implementations make use of the existing timer 
function clock gettime () to record the system time and 
calculate the overall execution time. 

 
3.4.1 Feed-Forward Phase  
The GPU program aims for a fully parallelization of the 
feed-forward operation using a huge number of threads to 
avoid any looping. This means every GPU-thread is 
therefore responsible for the computation of only a single 
weight value.  
Thus 28*28=784 threads were launched for a BPNN with 
784 inputs and 533 hidden neurons in the feed-forward 
phase from the input to the hidden layer.  
Each thread has read access to a single input neuron, read 
access to a single weight value and write access to a hidden 
neuron, resulting in (n + 1) *h write operations in the 
hidden layer.  
The number of threads was reduced to 533 threads for the 
above mentioned use-case.  
Each thread has read access to all input layer neurons, read 
access to a column of weights concerning a specific hidden 
neuron (edges from each input neuron to this particular 
hidden neuron) and write access to the same single hidden 
neuron.  
Therefore the write accesses to the hidden layer are reduced 
to h, each thread having only to perform a single write 
operation. 
 

 
Fig.2. Parallel Training Approach 

 
3.4.2 Adjust-Weight Phase 
In the GPU implementation two versions of the adjust-
weight operation may  implemented and analysed a row-
oriented version, where all weights of an input node (layer 
1) are handled by a thread, and a column-oriented version, 

where all weights of a hidden node (layer 2) are handled by 
a thread. The row-oriented version results in a lower 
execution time than the column-oriented version due to the 
given physical layout of the weight matrix and its values 
that are allocated row-wise in memory. The row-oriented 
version reaches a better spatial locality concerning the write 
operations and was therefore chosen for the experiments. 
 
Algorithm 2: Parallel Learning Method (Back 
propagation) on GPU 

 
1) Clean Host & Devices 
2) Initialize Host(topology, learningRate, 

momentum, minWeight, maxWeight) 
3) InitializeDevice(Layer, Neuron, Connection) 

// Forward Propagation 
4) Call CUDA Kernel Feed Forward  

FeedForward ();  
// Backward Propagation 

5) Call CUDA Kernel Calculate gradients  
//Calculate gradients 
CalcHiddenLayerGradients (); 
CalcOutputLayerGradients (); 

 //weight updation 
Call CUDA Kernel   
UpdateConnectionWeights ();  

6) Get results from Device to host  
getResults () 
{cudaMemcpy (cudaMemcpyDeviceToHost);} 

7) Calculate average error using    
CalcOutputError(); 

8) Persist network model file 
Persist(filename) 
{//After training network will Save network model 
file “abc.net” } 

9) Load Network Model for recognition 
Load (fileName){//Load network file for 
recognition file} 

 
4. EXPERIMENTAL SETUP 

4.1 Architecture 

 
Fig.3 VNet Architecture (Topology) 

 
Our study shows that this ongoing hardware progress may 
be more important than advance in algorithms and software 
(although the future will belong to methods combining the 
best of both worlds). Current graphics cards (GPUs) are 
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already more than 40 times faster than standard 
microprocessors [4].  
 
Table.5 Training parameters 
Topology 784,533,10 
Weight range -1,1 
Learning rate 0.1 
Momentum 0.9 
Error Threshold 0.5 
 
We train MLP with one input, one hidden & one output 
layer and varying numbers of hidden units. Mostly but not 
always the number of hidden units per layer decreases 
towards the output layer. Weights are initialized with a 
uniform random distribution in [-1, 1]. The initially random 
weights of the BMLP are iteratively trained to minimize the 
classification error on a set of labelled training images; 
generalization performance is then tested on a separate set 
of test images.  
 
4.2 Dataset Description  
We chose MNIST initially for training BPMLP.MNIST 
consists of two datasets, one for training (60,000 images) 
and one for testing (10,000 images). Pixel intensities of the 
original gray scale images range from 0 (background) to 
255 (max foreground intensity). 28 x 28 = 784 pixels per 
image are fed into the NN input layer. After working on 
MNIST we started building our own dataset HDDIL. 

 
Fig.4. 28 x 28 bitmap images for handwritten digits from 

MNIST 
 

5. PERFORMANCE OBSERVATIONS 
5.1 Computation Environment 
For experiment we use the following hardware and 
software environment: Intel CORE i5 machine with 4GB 
memory at 800MHz. The multithreaded GPU program was 
compiled by CUDA 5.5 and runs on nvidia GeForce GT 
630 graphics card with 1GB memory & 96 CUDA Cores. 
 
5.2 Performance Analysis 
5.2.1 Speedup factor 
For our simulation run the GPU programs used the same 
BPMLP configuration (learning rate, momentum, number 
of neurons, initialized weights and number of epochs). 
Therefore we can directly compare the execution times of 

the different runs. For all runs we set the learning rate (0.1) 
and the momentum (0.9) and vary only the number of 
epochs. As compared to serial execution on CPU for a 
BPMLP with 533 hidden neurons the GPU program 
(speedup = SP) will outperforms the CPU program. 
Performance factor = (TCPUs / T GPUs) = 2617/ 1070 = 
2.445794392523364 

 
Fig.5 Comparison with existing system Speedup Analysis 

for 60000 training samples 
 
5.2.2 Accuracy  
From our experiment we obtain average 97.7% recognition 
accuracy on actual data and 98% on test data. We 
successfully improved accuracy then current system. 
Fig.36. shows recognition rate of proposed system for 0 to 
9 digits & Fig.37shows comparison of accuracy between 
proposed vs existing system for handwritten digits. 
 

 
Fig.6 Recognition rate of proposed system for 0 to 9 digits 
 

 
Fig.7 Comparison with existing system recognition rate for 

handwritten digits 
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6. CONCLUSION AND FUTURE SCOPE 
In this paper we presented fast efficient artificial neural 
network for handwritten digit recognition on GPU to 
reduce training time with PTM (Parallel Training Method). 
We derived back propagation algorithm on GPU based 
parallelization should be preferred generally with compared 
to CPU based program. But still, for back propagation with 
small input data and few hidden neurons CPU based 
execution is better. But, if the input dataset is larger than 
GPU based parallelization is suitable to reduce training 
time. 
We expecting to explore the capabilities of GPU and 
multicores in cloud environments and offering them as 
services, where users can query and select them, depending 
on respective service level agreements and the system is 
providing high performance by automatic parallelization. 
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