
Fast Efficient Artificial Neural Network for
Handwritten Digit Recognition

Viragkumar N. Jagtap1 , Shailendra K. Mishra2

1M.E Student, Parul Institute of Technology, Vadodara.

2Department of CSE,Parul Institute of Technology, Vadodara.

Abstract: -Handwriting recognition is having high demand in
commercial & academics. In recent years lots of good work
has been done on hand written digit recognition to improve
accuracy. Handwritten digit recognition system needs larger
dataset and long training time to improve accuracy & reduce
error rate. Training of Neural Networks for large data sets is
very time consuming task on CPU. Hence, in this paper we
presented fast efficient artificial neural network for
handwritten digit recognition on GPU to reduce training time.
Standard back propagation (BP) learning algorithm with
multilayer perceptron (MLP) classification is chosen for this
task & implemented on GPU for parallel training. This paper
focused on specific parallelization environment Compute
Unified Device Architecture (CUDA) on a GPU hence
effectively speedup training & reduce training time.

Keywords: Artificial Neural Networks (ANN), Multilayer
Perceptron (MLP), Parallel Training, Back Propagation (BP)
Graphics Processing Unit GPU, CUDA

1. INTRODUCTION
To recognize handwritten digits like humans or near to that
is very challenging task. Because of long training time of
learning algorithms it is difficult to bring it to commercial
application. To bridge this gap combination of software and
hardware is required that works on parallelization [1],[2].
For high accuracy large amount of data is required to train
neural nets. But there is a greater need to explore the
capabilities of advance hardware and software technology
by exploring the parallelization capabilities of graphic
processing units (GPUs). The CUDA is a parallel
computing platform and programming environment
invented by NVIDIA [4]. In this paper we explore the
features of CUDA on GPU for the parallelized simulation
of a neural network based handwritten digit recognition.
The paper is organised as follows. Section 2 presents the
related literature work, state of the art and the recent
research trends. Section 3 describes the Parallel Training
Approach and implementation details. Section 4 describes
experimental setup, Neural Network Architecture &
dataset. Section 5 describes the performance &
observations. Finally, section 6 gives the conclusion and
future work.

2. LITERATURE REVIEW
Lots of research papers are written on handwritten digit
recognition. An efficient Hindi Digit Recognition System
drawn by the mouse and developed using Multilayer

Perceptron Neural Network (MLP) with Backpropagation
[5]. The proposed system has been trained on samples of
800 images and tested on samples of 300 images written by
different users selected from different ages. An
experimental result shows high accuracy of about 91% on
the testing samples. In [6] author presented an hybrid
approach with MLP for Gujarati hand written numerals
And achieved accuracy of about 92% on the testing
samples. A novel approach using SVM with MLP for
English hand written numerals is having highest accuracy
of about 97% on the testing samples [7]. A novel approach
using ANN with Hu moments for English hand written
numerals with poor accuracy on the testing samples [8].
ANN with nprTool for English hand written numerals And
achieved highest accuracy of about 98% on the testing
samples [9]. Processing steps for handwritten digit
recognition system is as follows.

Fig.1. Processing steps for handwritten digit recognition

system.

Advance technology we have of powerful graphic
processing units (GPU) in our desktop, laptops and servers
at low cost. Applying parallelization techniques for neural
network simulation became a promising research field by
using modern hardware.

 Viragkumar N. Jagtap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2302-2306

www.ijcsit.com 2302

Table 1: Focus on training time from previous work

Title Approach Accuracy
Data
Size

Focus
Training

Time

“An Efficient Neural Network For Recognizing
Gestural Hindi Digits” AJAS 2013 [5]

Back Propagation with
MLP

91% small No

“Recognition Of Gujarati Numerals Using Hybrid
Approach And Neural Networks ” IJCA(2013)[6]

Hybrid with MLP 92% small No

“ A Novel Approach to Recognize the off-line
Handwritten Numerals using MLP and SVM
Classifiers” IJCSET (2013)[7]

SVM with MLP 97%
Very
small

No

“An Artificial Neural Network Model For
Handwritten Digits Recognition” RRTIEP
(2013)[8]

ANN with Hu moments Poor small No

“Handwritten Isolated Digit Recognition Using
Artificial Neural Networks” IJCSAIT(2013)[9]

ANN with nprtool 98%
Very
small

No

3. PROPOSED SYSTEM

3.1 Overview of Proposed Work
We proposed new fresh approach to existing work for
improvements of learning algorithm and novel feature
extraction method for Handwritten Digit Recognition. We
focus to implementing method and architecture uses GPUs
for parallel processing to speed up learning process
Our study forces us to improve following parameters to be
considered to improve the system.
1) Decrease training time without affecting accuracy
2) Implementing method and architecture uses GPU for

parallel processing to speed up learning process.

3.2 Flow of Proposed Work
1) Input the digit: The user draws a digit inside the

special window using the mouse and then it is saved on
a file as .bmp/.jpg image

2) Pre-processing: The goal of pre-processing is to
simplify the digit recognition problem without
throwing away any important information to be more
concise representation for feature extraction stage. This
operation involves converting the gray image into a
binary image, perform skeletonization, invert the
image, and resize the binary image

3) Feature extraction: In this work novel Features
Extraction Method is proposed. Features are a set of
values of a given digit that are used to distinguish the
digit from each other. The feature extraction phase
calculates these values in order to produce a set of
measurements, called the feature vector, for each
object

4) Learning Phase: In this work new parallel learning
method is approached.

5) Digit recognition: The recognition step is based on the
use of neural networks, or in more, it’s based on
MLPs. This step realizes a set of discriminated
functions that associate a score to each possible class.
These scores may be regarded as being representative
of the probability of each class, to be one of the digits
presented to the system

6) Display digit: Displaying the output of a digit.

3.3 Back-Propagation Algorithm [5][12][14]
Back-propagation algorithm consists of the following steps:

1) Initialize input layer including an input for bias. Ii,

Wi, Ti, Yi
Where, Ii = input neurons, Wi = random weights,
Ti= target values, Yi=output at each neuron

2) Propagate activity forward through input layer to
output layer

I => H => O
3) Calculate output at each neurons at each layer

Oi =∑ Ii * Wi
4) Apply activation function to neurons and collect

final output at each neurons
Yi = 1/1+e

-(Oi)
5) Calculate the error in the output layer

Error =1/2 (Yi-Ti)
2

6) Back propagate the error through layer
dE/dWt = d(Error)/dWt

7) Update the weights
∆Wt = - ε (dE/dWt) + α(∆Wt-1)
Where,
ε = learning rate &
α = momentum

Algorithm 1: Back propagation on CPU

Forward Propagation
1. Oi = IiW1
2. Oi = 1/1+e-∑ Ii * Wi
3. Yi = OiW2
4. Yi = 1/1+e-Yi
Backward Propagation
5. Error = 1/2 (Yi-Ti)

2
6. ∆E= d(Error) / dWt
7. ∆Wt = - ε (dE / dWt) + α(∆Wt-1)
8. Wj <= Wj + ∆Wt

3.4 Proposed Parallel Learning Method
We apply parallelization approach motivated by our
problem domain and the available hardware resources:
1. The network node parallelization is deployed on GPU

using CUDA.

 Viragkumar N. Jagtap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2302-2306

www.ijcsit.com 2303

2. In this only one copy of the network is instantiated,
which resides on GPU.

3. Each thread on the GPU behaves like a neuron and
executes independently.

4. To speed up the implementation the training weights
and input data are stored in one dimensional array
aligned with the host and the device memory for
looping in GPU.

5. BPMLP is trained by a supervised learning mode.
After a feed-forward operation, the output value is
compared with the target value and classified to 10
categories, to check whether the BPMLP has correctly
classified the hand written digits.

6. GPU implementations make use of the existing timer
function clock gettime () to record the system time and
calculate the overall execution time.

3.4.1 Feed-Forward Phase
The GPU program aims for a fully parallelization of the
feed-forward operation using a huge number of threads to
avoid any looping. This means every GPU-thread is
therefore responsible for the computation of only a single
weight value.
Thus 28*28=784 threads were launched for a BPNN with
784 inputs and 533 hidden neurons in the feed-forward
phase from the input to the hidden layer.
Each thread has read access to a single input neuron, read
access to a single weight value and write access to a hidden
neuron, resulting in (n + 1) *h write operations in the
hidden layer.
The number of threads was reduced to 533 threads for the
above mentioned use-case.
Each thread has read access to all input layer neurons, read
access to a column of weights concerning a specific hidden
neuron (edges from each input neuron to this particular
hidden neuron) and write access to the same single hidden
neuron.
Therefore the write accesses to the hidden layer are reduced
to h, each thread having only to perform a single write
operation.

Fig.2. Parallel Training Approach

3.4.2 Adjust-Weight Phase
In the GPU implementation two versions of the adjust-
weight operation may implemented and analysed a row-
oriented version, where all weights of an input node (layer
1) are handled by a thread, and a column-oriented version,

where all weights of a hidden node (layer 2) are handled by
a thread. The row-oriented version results in a lower
execution time than the column-oriented version due to the
given physical layout of the weight matrix and its values
that are allocated row-wise in memory. The row-oriented
version reaches a better spatial locality concerning the write
operations and was therefore chosen for the experiments.

Algorithm 2: Parallel Learning Method (Back
propagation) on GPU

1) Clean Host & Devices
2) Initialize Host(topology, learningRate,

momentum, minWeight, maxWeight)
3) InitializeDevice(Layer, Neuron, Connection)

// Forward Propagation
4) Call CUDA Kernel Feed Forward

FeedForward ();
// Backward Propagation

5) Call CUDA Kernel Calculate gradients
//Calculate gradients
CalcHiddenLayerGradients ();
CalcOutputLayerGradients ();

 //weight updation
Call CUDA Kernel
UpdateConnectionWeights ();

6) Get results from Device to host
getResults ()
{cudaMemcpy (cudaMemcpyDeviceToHost);}

7) Calculate average error using
CalcOutputError();

8) Persist network model file
Persist(filename)
{//After training network will Save network model
file “abc.net” }

9) Load Network Model for recognition
Load (fileName){//Load network file for
recognition file}

4. EXPERIMENTAL SETUP

4.1 Architecture

Fig.3 VNet Architecture (Topology)

Our study shows that this ongoing hardware progress may
be more important than advance in algorithms and software
(although the future will belong to methods combining the
best of both worlds). Current graphics cards (GPUs) are

 Viragkumar N. Jagtap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2302-2306

www.ijcsit.com 2304

already more than 40 times faster than standard
microprocessors [4].

Table.5 Training parameters
Topology 784,533,10
Weight range -1,1
Learning rate 0.1
Momentum 0.9
Error Threshold 0.5

We train MLP with one input, one hidden & one output
layer and varying numbers of hidden units. Mostly but not
always the number of hidden units per layer decreases
towards the output layer. Weights are initialized with a
uniform random distribution in [-1, 1]. The initially random
weights of the BMLP are iteratively trained to minimize the
classification error on a set of labelled training images;
generalization performance is then tested on a separate set
of test images.

4.2 Dataset Description
We chose MNIST initially for training BPMLP.MNIST
consists of two datasets, one for training (60,000 images)
and one for testing (10,000 images). Pixel intensities of the
original gray scale images range from 0 (background) to
255 (max foreground intensity). 28 x 28 = 784 pixels per
image are fed into the NN input layer. After working on
MNIST we started building our own dataset HDDIL.

Fig.4. 28 x 28 bitmap images for handwritten digits from

MNIST

5. PERFORMANCE OBSERVATIONS
5.1 Computation Environment
For experiment we use the following hardware and
software environment: Intel CORE i5 machine with 4GB
memory at 800MHz. The multithreaded GPU program was
compiled by CUDA 5.5 and runs on nvidia GeForce GT
630 graphics card with 1GB memory & 96 CUDA Cores.

5.2 Performance Analysis
5.2.1 Speedup factor
For our simulation run the GPU programs used the same
BPMLP configuration (learning rate, momentum, number
of neurons, initialized weights and number of epochs).
Therefore we can directly compare the execution times of

the different runs. For all runs we set the learning rate (0.1)
and the momentum (0.9) and vary only the number of
epochs. As compared to serial execution on CPU for a
BPMLP with 533 hidden neurons the GPU program
(speedup = SP) will outperforms the CPU program.
Performance factor = (TCPUs / T GPUs) = 2617/ 1070 =
2.445794392523364

Fig.5 Comparison with existing system Speedup Analysis

for 60000 training samples

5.2.2 Accuracy
From our experiment we obtain average 97.7% recognition
accuracy on actual data and 98% on test data. We
successfully improved accuracy then current system.
Fig.36. shows recognition rate of proposed system for 0 to
9 digits & Fig.37shows comparison of accuracy between
proposed vs existing system for handwritten digits.

Fig.6 Recognition rate of proposed system for 0 to 9 digits

Fig.7 Comparison with existing system recognition rate for

handwritten digits

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9

TestData 100100100 98 99 99 99 98 99 98

RealData 100 99 99 99 98 96 96 95 98 97

A
cc
u
ra
cy
 %

Proposed VNet Recognition Rate

80
85
90
95

100

0 1 2 3 4 5 6 7 8 9

Vnet GPU 10099 99 99 98 96 96 95 98 97

Previous CPU10097 93 90 87 93 87 93 87 87

A
cc
u
ra
cy
 %

Proposed vsCurrent System

 Viragkumar N. Jagtap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2302-2306

www.ijcsit.com 2305

6. CONCLUSION AND FUTURE SCOPE
In this paper we presented fast efficient artificial neural
network for handwritten digit recognition on GPU to
reduce training time with PTM (Parallel Training Method).
We derived back propagation algorithm on GPU based
parallelization should be preferred generally with compared
to CPU based program. But still, for back propagation with
small input data and few hidden neurons CPU based
execution is better. But, if the input dataset is larger than
GPU based parallelization is suitable to reduce training
time.
We expecting to explore the capabilities of GPU and
multicores in cloud environments and offering them as
services, where users can query and select them, depending
on respective service level agreements and the system is
providing high performance by automatic parallelization.

REFERENCES
[1] D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights, in:
Proceedings of the international joint conference on neural networks,
Vol. 3, Washington, 1990, pp. 21–26.

[2] P.Wu, S.-C. Fang, H. Nuttle, Curved search algorithm for neural
network learning, in: Neural Networks, 1999. IJCNN ’99.
International Joint Conference on, Vol. 3, 1999, pp. 1733 –1736
vol.3. doi:10.1109/IJCNN.1999.832638.

[3] CUDA Specifications and Documentation.URL
http://docs.nvidia.com/cuda/index.html

[4] Nidal Fawzi Shilbayeh, Mohammad Mahmmoud Alwakeel And
Maisa Mohy Naser, “An Efficient Neural Network For Recognizing
Gestural Hindi Digits” American Journal Of Applied Sciences 10
(9): 938-951, ISSN: 1546-9239 ©2013

[5] Baheti M. J. ,Kale K. V. , “Recognition Of Gujarati Numerals Using
Hybrid Approach And Neural Networks ” International Journal
Of Computer Applications (0975 – 8887) International
Conference On Recent Trends In Engineering & Technology -
2013

[6] Mamta Garg Et Al. “ A Novel Approach to Recognize the off-line
Handwritten Numerals using MLP and SVM Classifiers”
International Journal Of Computer Science & Engineering
Technology (IJCSET) ISSN : 2229-3345 Vol. 4 No. 07 Jul 2013

 [7] Snezana ZEKOVICH Milan TUBA , “An Artificial Neural Network
Model For Handwritten Digits Recognition” Recent Researches
In Telecommunications, Informatics, Electronics And Signal
Processing ISBN: 978-960-474-330-8 2013

[8] K. Siva Kumar, T.Anusha, B .Ramesh, “Handwritten Isolated Digit
Recognition Using Artificial Neural Networks” International
Journal Of Computer Science Applications & Information
Technologies Vol.1, No.1 (2013)

 [9] Dan C. Ciresan, Jonathan Masci, Luca M. Gambardella, Jurgen
Schmidhuber “Handwritten Digit Recognition with a Committee of
Deep Neural Nets on GPUs” Technical Report No IDSIA-03-11,
March 2011.

[10] S N Sivanandam, S Sumathi, S N Deepa “Introduction to Neural
Networks Using MATLAB6.0” Mc Graw Hill Education 2013

[11] Simon, Hykin “Neural Networks and Learning Machines”, PHP 2013
[12] Han, Kamber, Pei “Data mining Concepts & Techniques”, Morgan

Kaufman MIT press.

 Viragkumar N. Jagtap et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2302-2306

www.ijcsit.com 2306

